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Storage and loss moduli in 
discontinuous composites 

D. M c L E A N ,  B. E. READ 
National Physical Laboratory, Teddington, Middlesex, UK 

The paper deals with viscoelastic, rubber-like material unidirectionally reinforced with 
discontinuous fibres. The longitudinal storage modulus is calculated not only from an 
equation based on an existing force balance treatment but also from the elastic strain 
energy stored in matrix and fibres, using two different models to derive the stress and 
strain distributions from which the stored energy is calculated. There is very good 
agreement between all the calculations. The energy calculations reveal that loss modulus 
is also greatly increased by discontinuous reinforcement and enable its value to be 
estimated. Experiments on storage and loss modulus are reported and show that the 
calculations underestimate storage modulus and overestimate loss modulus. In both cases 
the factor of error ~ 2, and arises because the amplified matrix strain is underestimated 
and is partly hydrostatic; the hydrostatic strain is non-dissipative and therefore does not 
contribute to the loss modulus. Discontinuous reinforcement can increase loss modulus 
as well as storage modulus by more than 100 times, and this should help sound and 
vibration deadening. An estimate is made of the wide ratio of compliance -- breaking 
strength available with discontinuous but not with continuous reinforcement, which opens 
up new design latitude for components hitherto reinforced with continuous fibres. 

1. Introduction 
In this environmentally conscious age, loss 
modulus is as important as storage modulus 
because it measures sound and vibration 
deadening capacity. This paper shows experi- 
mentally and theoretically that discontinuous 
reinforcement of a rubber-like viscoelastic 
matrix can produce a large increase in loss 
modulus as well as in storage modulus in the 
axial direction. The calculations relate also to 
another problem. Tyres, belts, and hosepipes are 
currently reinforced with continuous fibres, 
which makes the ratio of compliance to breaking 
strength invariant for a given fibre material. 
With discontinuous fibres the ratio can be varied 
and the range available is calculated. A variable 
ratio would give more latitude in the design of 
these pieces of equipment. 

Existing calculations of the storage modulus of 
discontinuous composites [1, 2] have been based 
on the method introduced by Cox [3], In this 
method the stress or strain distribution in a given 
fibre and surrounding matrix are first calculated 
from the equations of elastic force equilibrium. 
The modulus is then estimated from the average 
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fibre stress resulting from an applied matrix 
strain or from some average strain in the matrix 
produced by an applied load. Owing to the 
complexity of such calculations, certain stress 
components are often neglected in the basic 
model, leading to approximations in the derived 
stress fields, and further approximations are 
introduced in the definition of average stress or 
strain. There is a further approximation of 
unknown magnitude because the idealized fibre 
distributions for which the calculations are made 
differ from the irregular distribution in practical 
discontinuous composites. In general it is 
difficult to assess not only the magnitude of these 
approximations but also their sense. Alternative 
procedures are presented here which rely on 
strain energy calculations. A geometrical argu- 
ment [4] shows that shear strain is greatly 
amplified in reinforced matrix as compared with 
unreinforced and on this basis approximate 
calculations are made of the strain energy in 
matrix and fibres when a sample is stretched. 
These strain energies are also calculated using the 
strain distribution deduced here from Cox's 
force-balance treatment. Because energies are 
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additive, the sense of the approximational error 
is clear; moreover, the shear strain amplifica- 
tion makes it immediately obvious that loss 
modulus as well as storage modulus is greatly 
increased by discontinuous reinforcement. 

The paper, therefore, gives calculations and 
measurements of loss and storage modulus in 
the longitudinal direction and indicates the range 
of breaking strength -- compliance offered by 
discontinuous reinforcement. 

2. Calculation of storage modulus 
2.1. Geometrical model 
When a discontinuous reinforced sample is 
stretched, there are two distinguishable con- 
tributions to the sample extension e: (1) the fibres 
become extended and contribute amount ~f'; (2) 
in addition, the fibres move relatively to each 
other in a longitudinal direction; the resulting 
shear in the matrix contributes em' to the sample 
strain. Then 

= ~m' + E ( .  (1) 

In order to find e for a given stress ~r, and thus the 
composite moduli, ~m' and El' need to be 
determined. 

Figure 1 
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Figure 2 
Figures 1 and 2 Schematic diagram of piece of composite 
before and after an extension e. 

One calculation of era' depends on geometrical 
arguments [4], the relevant part of which is 
briefly repeated. Consider the piece of aligned 
fibre reinforced material shown in Figs. 1 and 2. 
Under tensile loading parallel to the fibres this 
piece of material increases in length from p in 
Fig. 1 to p(1 + E) in Fig. 2, the stress/strain curve 
rising along OC in Fig. 3. A part Era' of this 
extension is caused by relative displacement 
between matrix and fibres and makes the 
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contribution in Fig. 3 indicated by OM. By 
symmetry, the relative displacement is zero at 
the centre of the fibre but at the fibre end a point 
in the matrix such as A (Fig. 1) moves away 
from the end to A' (Fig. 2) and between matrix 
and fibre there is relative displacement A'B'  = 
em'l/2, where l is the fibre length. At the opposite 
end there is an equal amount A"B" of relative 
displacement but in the opposite sense. Assuming 
that the relative displacement increases linearly 
from fibre centre to fibre end the average 
relative displacement is Em'l/4. 

f .J 
C 

o" 

O 

Figure 3 Stress-strain diagram. Era' is the sample extension 
associated with shear strain amplification in the matrix. 
e~' is the (additional) sample extension associated with 
extension of the fibres. 

This last assumption requires the fibre strain 
E~ to be substantially less than the applied strain 
E even at the fibre centre; otherwise era' would be 
zero opposite a central stretch of each fibre. In 
the material to which the calculations are applied 
it will be seen in the discussion that this con- 
dition is satisfied. 

The fibre/matrix bond is significant for the 
magnitude of ~m'. At one extreme, which is more 
likely in practice, suppose there is such strong 
adhesion of matrix to fibre that no sliding can 
take place at the interface between them. To 
accommodate the relative displacement a shear 
strain must then occur in the matrix. By 
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symmetry, along a centre line in the matrix, i.e. 
along a line joining the arrows in Figs. 1 and 2, 
there is the relative displacement parallel to the 
fibres just indicated. If s is the transverse 
spacing between fibres (Fig. 1), the consequential 
average shear strain 7' parallel to the fibres is 
7" = Em'l/2s. In unreinforced matrix the shear 
strain would be 7'u = 2era' (the Tresca value). 
The shear strain amplification V/7'u is, therefore, 
I/4s. If  the matrix is Hookean the elastic strain 
energy stored in the volume Vm of matrix 
contained in unit volume of composite is 
consequently, Vm(I/4s) 2 x that stored in unit 
volume of unreinforced matrix extended by the 
same amount. Hence, if the same stress ~ is 
applied to reinforced and unreinforced, the work 
stored is Vm(I/4s) ~ x less in the former than in the 
latter, and in unit volume of composite is thus 

8~ 2 
Wm = EmVm(l/s)2" (2) 

The relative displacement between matrix and 
fibre may alternatively be accommodated entirely 
or partly by sliding at matrix/fibre interfaces if 
adhesion there is weak. Then era' and Wm are 
both increased for given e. Further, stress trans- 
fer to the fibres is weakened and the latter's 
contribution to the breaking strength is dimin- 
ished. Sliding thus diminishes tensile modulus and 
strength and it will be assumed to be avoided by 
adequate adhesion. Sliding can, however, help 
damping as indicated later. 

The other contribution to the strain, e(, 
arises because a tensile stress af is induced in the 
fibres when the sample is extended. The con- 
tribution el' produces in Fig. 3 the difference 
between OC and OM. af varies along a fibre 
length, and if the matrix is Hookean is given by 
Equation 11 of [4] as 

( 4x3 
~f = ~  1 - 12j (3) 

where Vf is the volume fraction of fibres, x is the 
distance from the mid-point, and it has been 
assumed that at its mid-point a fibre carries the 
full applied load, i.e. the stress there is c~/V~, and 
the adjoining matrix carries zero longitudinal 
stress. By averaging ~rf2/2Ef (El being the fibre 
modulus) along the fibre length the strain energy 
stored in the fibres is found to be 

4~ 2 
Wf = 15Ef~ (4) 

*in [4] tee factor 2 was omitted from the numerator. 

The matrix is, of  course, also extended by the 
amount El' in addition to Era' but no strain 
amplification is now involved, so that for the 
compliant rubbery matrices in question the 
corresponding energy and stress terms are 
negligible. This is why the stress at the mid-point 
of a fibre can be taken as ~/Vt. 

The total strain energy We = Wm + W~. 
Further, We [= �89 + El')] = a2/2Ee whence 

1 16 8 

Ee - Em Vm(l/s) 2 q- 15Ef--'---~f (5) 

Using Equation 5 Ee is plotted versus Vf in Fig. 
4 as the solid line for the polymer-carbon fibre 
composite on which the experiments described 
below were performed: E m =  0.03 G N  m -2, 
Ef = 400 GN m -2, and the value of l/s assuming 
a square array of fibres on a transverse section is 

l 2rVr 
s = ~/(~rVf) - 2Vf (6)* 

where the fibre-aspect ratio r = 112. Since 
Equation 5 does not apply when Vf -~ 0 because 
a term for unreinforced matrix has not been 
included, in Fig. 4 Ee was calculated only 
between Vf = 0.2 and Vf = 0.01 and was 
continued by eye from the latter point to the 
experimental value of Em at V~ = 0. 

2.2. Force-balance model 
For comparison, a calculation from an existing 
force-balance model was also made. Cox's 
model [3] was chosen since discussion sub- 
sequent to his paper has not obviously produced 
any improvement as far as calculation of the 
longitudinal modulus of a discontinuously 
reinforced composite is concerned. The model is 
depicted in Fig. 5. Each fibre is assumed to be 
surrounded by a cylinder of matrix, radius Yl, the 
external surface of which is extended by the 
composite strain E, and a force balance method is 
then used to calculate the stress in the fibre, 
giving longitudinal modulus as (Equation 32 of 
[3]). 

= [1 tanh fll/2] 
Ee [31/2 ] (7) 

where/3 = ~/[2Gm/Efa21n(ya/a)] (see Appendix), 
Gm being the shear modulus of the matrix. Ee 
calculated from Equation 7 assuming Gm = 
Era~3 = 0.01 GN m -2 is indistinguishable in Fig. 
4 from the previous energy calculation (Equation 
5). In the calculation from Equation 7, y~ was 
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Figure 4 The lower curves show the calculated influence of 
V~ on longitudinal composite modulus Ee in the case of 
discontinuous reinforcement. The upper curve relates 
to continuous reinforcement when Ef >~ Era. The circles 
are experimental measurements. Carbon fibres in soft 
polymer. 

taken as half the centre-to-centre spacing. 
However, following Cox, a regular hexagonal 
array of fibres on a transverse section was 
assumed; this yields y~/a = 0.952/Vf ~ and l/s = 
2rVd(1.905V~ ~ - 2Vd, which is little different 
from Equation 6. Since Equation 7 gives 
Ee = 0 at Vf = 0, the calculation was again made 
only down to V~ = 0.01 and continued by eye to 
the value of Em at V~ : O. 

From the model we may calculate the shear 
strain in the matrix and the tensile strain in the 
fibres which arise when the sample is extended, 
so that the strain energies Wm and We can be 
deduced and Ee hence calculated from the strain 
energy. It seemed worth doing this, especially as 
a calculation of loss modulus would also then 
become possible. 

In Fig. 5 a cross-section such as XYZ which is 
plane in the unstressed condition becomes 
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Figure 5 Unit cell of Cox's model. The plane XYZ becomes 
X'Y'Z' when a stress is applied. 

X 'Y 'Z '  when an external longitudinal tensile 
stress is applied. In the Appendix it is shown that 
the resultant matrix shear stress ~- and shear 
strain ~, at a radial distance y from the fibre 
centre line are ~- -- ~-oa/y with of course ~, = "r/Gm; 
% is the shear stress at the fibre-matrix interface 
and varies with x. It might be noted that ~- and y 
do not vanish at any point between adjacent 
fibres (unless % = 0) as in reality they sometimes 
must; the reason is the model's neglect of tensile 
stresses in the matrix. In the Appendix it is 
further shown that 

T = 
131 2y cosh 

where �9 is the longitudinal composite strain as 
before. The shear strain energy stored in the 
cylinder of matrix of radius Yl surrounding each 
fibre is 

Wm= 7 Y dy dx dO, 
v=a J x  =0 0 =0 

where 0 is the azimuthal angle in the plane 
perpendicular to the plane of  the paper in Fig. 5. 
The strain energy Wm in the volume Vm of matrix 
contained in unit volume of composite is 
VrnWm/rr 1@12 -- a ~) and works out to 

�9 2VmE~(sinh 13l - 13l) 
W m =  2131(y12/a2 1)(l + cosh 13l) (8) 

The strain energy in the fibres can also be 
calculated. Cox finds the longitudinal fibre stress 
to be 

[ c o s h ~ ( l / 2 - x ) ]  

and the fibre strain is of course �9 = crf/E~. Hence 
the strain energy stored in one fibre is 
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f ZI2 

W~ = 1ra2crf~fdx. 
j0  

The strain energy Wf in the volume Vf of fibres 
contained in unit volume of composite is, 
therefore, 

E2E~Vf 
W f -  ~l 

[.~/(cosh fil + 2_)_ +_ _sinh fll ] 
2(cosh/31 + 1) - 2 tanh fil/2] �9 (9) 

Ee can be found from 

Eo = 2Wo/e 2 = 2(Wm + Wf)/d.  (10) 

Ec has been calculated from Equation 10 using 
G m =  0.01 GN m -2 and the same composite 
parameters as before and the result is plotted in 
Fig. 4. The new values are about 1.1 times larger 
than those given by Equation 7 (e.g. 1.09 at 
Vf = 0.1) and thus slightly closer to the experi- 
mental values. 

3. Measurement of storage modulus 
The experimental composite samples consisted of 
unidirectionally aligned chopped carbon fibres 
(type I, high modulus) in a high damping matrix 
of uncross-linked polymer. The matrix polymer 
was obtained from Hoechst Chemicals and was 
designated VP71. It had a soft rubber-like 
consistency at room temperature and flowed 
readily under load so that specimens in strip 
form were unable to support their own weight. 
They were therefore studied in the form of layers 
on the surface of steel strips. Two-layered 
polymer-steel specimens were prepared by 
placing polymer on the surface of steel strips 
edged with aluminium foil and heating to 120~ 
As the polymer was liquid-like at this tempera- 
ture, it readily flowed into a layer of uniform 
thickness and air bubbles were slowly expelled. 
The aluminium foil edging was subsequently 
removed. 

To make the composite samples, oriented 
chopped carbon fibre mats of thickness 1.8 mm 
were used containing 11.8 wt%VP71 as a binder. 
These mats were kindly prepared by Fothergill 
and Harvey Ltd using a published process [5]. 
Since specimens of the desired Vf (i.e. < 0.2) 
were unable to support their own weight, they 
were also prepared as layers on the surface 
of steel strips. A suitable piece of mat was 
placed on a steel strip edged with aluminium foil 
so that its fibres were oriented in the longitudinal 

direction of the strip. A calculated quantity of 
VP71 was roughly pressed into strip form and 
placed on top of the mat. After heating to 120 ~ C 
the polymer penetrated the mat to form a com- 
posite specimen which adhered to the steel 
surface. As an alternative to heating, it was also 
found that the polymer penetrated the mat if 
exposed to acetone vapour in a desiccator, as 
the acetone vapour had the effect of producing 
a fairly thick polymer solution; the acetone 
solvent could subsequently be removed by slow 
evaporation. No difference has so far been found 
between the properties of composites prepared 
by the two methods. Composite samples with 
Vf approximately equal to 0.07 and 0.17 re- 
spectively have been made. 

Some examination was made to characterize 
the samples. In the case of those with Vf = 0.07, 
the values of V~ calculated from the density of the 
final samples agreed with the values calculated 
from the initial weights of VP71 and carbon 
fibres, indicating that no voids were present. The 
samples with Vf = 0.17, however, were found 
from a comparison of measured and estimated 
densities to contain between 17 ~ and 38 ~ voids 
which were not entirely removed by pressing the 
specimens. The results quoted later relate to zero 
void content as determined by extrapolating from 
measurements at several void contents. In order 
to measure fibre lengths, small pieces of mat were 
stirred in acetone to dissolve the VP71 and 
disperse the fibres, which were collected on filter 
paper and photographed at x 10. In all 314 
fibres were measured, their lengths ranged from 
0.05 to 2.8 mm, with an arithmetic mean of 0.81 
mm. Some breakage must have occurred during 
preparation of the mats since the original fibres 
were uniformly 3 mm long. To measure fibre 
diameters, some oriented fibre specimens were 
prepared by incorporating into strips of the mat 
an epoxy resin which cured to a rigid matrix. 
Cross-sections of these specimens were photo- 
graphed in an optical microscope after polishing. 
Among the 200 fibres measured in this way, the 
diameters ranged from 4.30 to 9.1 gm with an 
arithmetic mean of 7.2 gin. The ratio r &average 
fibre length to average fibre diameter in the 
composite samples was therefore equal to 112. 

The moduli of the polymer and composite 
samples were determined from the difference in 
resonance frequency of a steel strip with and 
without a layer of sample attached. Since VP71 
adheres well to steel, the method described was 
well suited to making the necessary test pieces 
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and was partly chosen for this reason. The test 
pieces, which were 180 mm long and 12.7 mm 
wide, were suspended by fine nylon filaments at 
their nodal points and forced at one end into 
flexural vibrations by a magnetic transducer 
fed by a variable frequency oscillator. The 
amplitude of vibration was determined at the 
other end by a proximitor, the output of which 
was fed through an amplifier to a recorder. 
Measurements were made of the various resonant 
frequencies f,(n = 1, 2, 3 . . .) at which the 
vibration amplitude was a maximum. Two steel 
samples were employed, having respectively 
thicknesses of about 1 mm and 2.5 mm, and these 
exhibited fundamental resonant frequencies f l  
of about 169 and 424 Hz respectively. 

Assuming that the flexural vibration induces 
only longitudinal tension and compression and 
no longitudinal shear, simple beam theory gives 
the bending stiffness B (defined as bending 
moment -- curvature) = 47r~MX3f~/K~ 4, where 
M is the mass and X the length of the two- 
layered strip and K~ = 4.730 for the fundamental 
resonance (n = 1). Schwarzl's [6] analysis of 
two-layered beams was used for determining the 
modulus Ec of the sample layer from the 
measured values of bending stiffness, thickness 
ratio of the two layers and modulus Es of steel 
alone. The analysis was modified because the 
widths Is and Ic of the steel and the adherent 
composite differed by a few per cent owing to 
the lateral contraction of the surface layers on 
cooling. For Schwarzl's ratio Ec/Es, the ratio 
EcIc/EsIs was substituted throughout and Is 
was included as a factor in the expression for the 
bending stiffness of the two-layered strip.Young's 
modulus for the unreinforced polymer was 
determined over a frequency range by measuring 
the lowest four resonant frequencies (.fl to f4) 
with polymer layers on each of the two steel 
strips. The value of Em calculated as described 
increased from 0.021 GN m -z at 143 Hz to 0.075 
GN m -2 at 2181 Hz. For the composite speci- 
mens, the corresponding value Ec decreased 
somewhat with increasing resonant frequency, 
probably because some longitudinal shear 
deformation occurred at the higher modes owing 
to the large ratio of tensile to shear moduli in 
the composite samples. As the errors associated 
with any shear effects are a minimum at the 
fundamental mode the moduli obtained at the 
lowest resonant frequency f l  are presented here 
for the composite specimens. Taking into account 
the large length/thickness ratios ( >  100) of the 
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composite layers, errors of less than 7 ~  are 
estimated for the Ec values on the basis of the 
theory of Goens [7]. The moduli obtained from 
the fundamental frequencies around 250 Hz are 
shown in Fig. 4. Also shown at V~ = 0 is the 
polymer modulus of 0.03 GN m -2 which was 
obtained at 250 Hz from the modulus-frequency 
plot. The theoretical curves in Fig. 4 run fairly 
close to the experimental composite values, 
indicating moduli about two times smaller than 
the latter. 

4. S p ec ia l  ca se  
A rigorous calculation has been made by Ferriss 
[8] for certain cases and is equivalent to an exact 
experiment in these cases. A comparison between 
Ferriss and the previous calculations is therefore 
another test of the accuracy of the latter. 

Ferriss' solution describes flow rate when the 
matrix material has linear viscosity, is reinforced 
with infinitely thin and inextensible lamellae, 
and plane strain under longitudinal tensile stress 
is in question. Since the basic equations for this 
situation have the same form as those of linear 
elasticity the solution also describes strain as a 
function of tensile stress when the matrix 
material obeys the laws of linear elasticity and 
plane strain is also in question; this is the 
analogy pointed out by Rayleigh [9]. Ferriss' 
Equation 35, therefore, gives the tensile stress 
required to produce unit strain in material 
reinforced with parallel lamellae, the comparable 
stress in reinforced material being 8 x/4~, in the 
terminology of Equation 35. These stresses are 
equal to the moduli and their reciprocals to the 
compliances. 

-.=1--- i . . . .  

Thickncss~ 

Figure 6 Indicating nomenclature used in the rigorous 
calculation concerning hard, infinitely thin lamellae in a 
soft matrix. The dashed lines indicate Ferriss' unit cell. L 
is half the length of a lamella. 

Since reinforcement with lamellae is in 
question the simplest comparison is with 
Equation 5, which is expected to apply with 
about equal accuracy to lamellar and cylindrical 
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fibres, using for l/s the appropriate ratio in- 
dicated below. It  is desirable to make the 
comparison for practically interesting situations 
so far as this is possible with infinitely thin 
lamellae, which requires that these situations be 
expressed in terms of the parameters used in the 
exact calculation. These are indicated in 
Ferriss' "unit  cell" illustrated in Fig. 6, where L 
is half a length of a lamella, i.e. l/2 in the notation 
of Fig. 1. The calculations give Ee/Em as a 
function of R = L/(L + G) for various values of 
K = (L + G)/H; G is indicated in Fig. 6. For  
reasonable overlap of adjacent lamellae, R 
should lie between, say, 0.7 and 1.0. Further, 

Lt L~t(L + G) 2R~K 
V f -  

(L + G)H (L + G)~LH r 

where r is the lamellae aspect ratio, 2L/t, whence 
K = rV~/2R 2. Given that the useful upper and 
lower limits o f R  2 are 1.0 and 0.49, the interesting 
range of K then lies between rVf/2 and rVf. The 
interesting range of Vf is mainly between 0.01 
and 0.2, while r > 100 in order that the lamellae 
contribute efficiently to the breaking strength 
(see below). Now l/s, to use the nomenclature of 
this paper, = 2L/(H - t) in the nomenclature of 
[8] and Vf = Lt/[H(L + G)] so that t /H = VdR. 
Hence 

2L/H 2RK 
l / s -  ( 1 - t / H ) -  1 - Vf/R ' 

which enables Equation 5 to be expressed in 
terms of Ferriss' parameters. 

The ratios Ee/Em calculated according to 
Equation 5 and [8] are given in Table I for 
several conditions. To remind the reader again, 
the reinforcing lamellae are assumed to be 
inextensible so that in Equation 5 the second 
term is zero. 

The calculation according to [8] is exact when 
t = 0. I t  is therefore most accurate for small 
V, and large r, for which condition Equation 5 
tends almost exactly to half the correct value, as 
it does in Fig. 4. 

It  might be remarked that, for given r and V,, 
the results in Table I, which relate to lamellar 
reinforcement, differ markedly f rom those which 
would be calculated for rod reinforcement, as 
can be seen by making comparisons between 
Table I and Fig. 4. The reason is that I/s is 
considerably smaller for lamellar than for 
cylindrical reinforcement at equal r and Ve. The 
geometrical model thus copes quite well with the 

TABLE I Comparison ofEe/Em = Cm/Cc calculated in 
different ways 

r R K [8 ] Equation 5 

vfo.01 
162 0.9 1.0 2.3 0.2 
256 0.8 2.0 2.6 0.65 
490 0.7 5.0 5.5 3.1 
640 0.8 5.0 7.5 4.0 
810 0.9 5.0 11 5.1 

1620 0.9 10 40 20.5 
Vf0.03 

85 0.8 2.0 2.6 0.67 
108 0.9 2.0 3.6 0.85 
213 0.8 5 7.5 4.17 
270 0.9 5 11 5.25 
540 0.9 10 40 21 

Vf0.10 
25.6 0.8 2 2.6 0.75 
49 0.7 5 5.5 3.75 
64 0.8 5 7.5 4.7 
81 0.9 5 11 5.75 

162 0.9 10 40 23 
256 0.8 20 92 75 
324 0.9 20 145 92 

V~0.20 
128 0.8 20 92 91 
162 0.9 20 145 107 

substantial difference between lamellar and rod 
reinforcement. 

5. Loss  m o d u l u s  - c a l c u l a t i o n  a n d  
m e a s u r e m e n t  

Under oscillating stress, rubbery matrix materials 
dissipate energy, and for small strains the 
energy W0 dissipated in each cycle is some 
fraction h of  the peak elastic energy, i.e. W 0 = 
hc~Z/2Em per unit volume. With discontinuous 
reinforcement and strong matrix-fibre adhesion 
the energy W1 dissipated per cycle in dis- 
continuously reinforced matrix is therefore 

W 1 = hWm = Vm(l/4s)2Wo (11) 

for equal extension of reinforced and un- 
reinforced samples. The loss modulus is thus 
very readily shown by this energy argument to be 
greatly increased by reinforcement. 

Suppose, however, that instead of matrix and 
fibre being completely adherent, the fibre-matrix 
shear bond is weak, so that all the relative 
displacement between matrix and fibre is 
accommodated at the interface. The average 
relative displacement is em'l/4. I f  the sliding 
frictional force per unit area is -rf, the energy 
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dissipated at each fibre during extension em' is 
~r(l/r)'c~ern'12/4 (r is the aspect ratio and l/r there- 
fore the fibre diameter), or four times this amount 
in one complete cycle of + Era' and - era'. 
There are 4Vf/[~r(I/r)~l] fibres per unit volume so 
that the energy dissipated in unit volume during 
one complete cycle is 4Vfr'rfern'. In addition, 
hysteresis in the matrix is responsible for a 
further dissipation of �89 since in each 
unit volume a sample of volume Vm of matrix 
undergoes extension of + e and - e per cycle. 
The total energy dissipated by unit volume in a 
cycle is therefore 

W~ = 4V~r'r~em' + �89 (12) 

If  the fibre-matrix bond is intermediate in 
strength it may happen that part of the relative 
displacement is accommodated by sliding and 
part by shear. Suppose a fraction a is accom- 
modated by sliding. Then the energy dissipated 
by sliding friction, W2', becomes W2' = aW2. A 
fraction (1 - ~) of the relative displacement 
remains to be accommodated by shear, so that 
the matrix shear strain is (1 - ~)em'l/2s instead 
of em'l/2s. With a linear stress-strain relationship 
the shear stress is also reduced by the factor 
(1 - e), so that the hysteresis loss WI' is 
WI' = (1 - ~)2W1. Hence 

d(Wl' + Wz')da = - 2(1 - e)W1 + W2,  

from which it can be seen that maximum dissipa- 
tion always occurs at g = 0 or ~ = 1. By sub- 
stituting plausible values for the parameters it 
seems that ~ = 0 is likely to give larger energy 
dissipation than e = 1. The latter situation is 
therefore not further considered here. 

The composite loss modulus Ec' is defined by 

Ee' energy dissipated per cycle h Wm 
E---~- = peak energy stored per cycle - We (13) 

using Equation 11. Employing the earlier 
results for Ee, Win, and We and putting h = 
Em'/Em where Era' is the loss modulus of 
unreinforced matrix, it is found that 

Ee' Vm(l/4s) 2 
- - =  [ 8EmVm(l/4s)~] z" (14) 
Era' 1 + 15EfV~ ] 

Equation 14 also follows from the elastic- 
viscoelastic correspondence principle [10] which 
enables us to replace Ee and Em in Equation 5 by 
complex moduli Ee* = Ee + iEe' and Em* = 
Em + iEm'. On resolving the imaginary com- 
ponent Equation 14 is obtained when it is 
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remembered that Ern'/Ef ~ 1. The curve of Ee' 
versus Vf given by Equation 14 is drawn in Fig. 
7 using an experimental value for Em' of 0.041 
GN m -2. The loss modulus was also calcula- 
ted using the shear strain deduced above from 
Cox's model, by substituting for Wm and We 
in Equation 13 from Equations 8 and 9, and 
the curve of Ee' versus V~ is drawn in Fig. 7, 
using the same experimental value ofEm'. The 
two calculated lines agree almost exactly. Again 
the calculations were made down to Vf = 0.01 
and the curve continued by eye to Era' at 
V f = 0 .  

IOO 

I0 

t Ec 
(GN 16 2) 

1.0 

Discontlnuous fibres- 

q~ 

Equation 14 

j o 
Combining 
equations 
8,9,13 

0.1 

i 
I 

0.01 
0 

Continuous fibres 

I 
O.I 
vf 

0 . 2  

Figure 7 Influence of Vf on longitudinal loss modulus 
Ee'. The two upper lines are theoretical values for 
discontinuous fibres, and the lower line is the theoretical 
result for continuous fibres when E (  ~ Era'. The circles 
are experimental measurements. Carbon fibres in soft 
polymer. 

The experimental value of Era' and the other 
experimental values in Fig. 7 were obtained by 
extending the modulus experiments already 
described on the two-layered steel-polymer or 
steel-composite strips. At each side of the 
resonance frequency fl,  the two frequencies were 
determined at which the measured vibration 
amplitude was 1/~/2 of the maximum resonance 
amplitude. The difference between these two 
frequencies Afwas used to compute E'/E for the 
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two-layered specimen by the well-known rela- 
tionship E'/E = A f/f1. The ratio of E'/E for the 
polymer or composite layer was next calculated 
from Schwarzl's analysis using the measured 
thickness ratios of the two-layered strips and 
Es'/Es = 3.8 x 10 -~ for steel alone determined 
by a free-decay method. The calculated loss 
moduli overestimate the measured values by 
factors of  about 2. 

In Fig. 7 the bottom line shows the theoretical 
loss modulus for continuous reinforcement, i.e. 
assuming E ' e to be given by the law of mixtures 
and, of course, no strain amplification within the 
matrix. In this case Ee' = gmEm' if  the fibres are 
perfectly elastic (zero loss). When a large loss 
modulus is desirable, discontinuous reinforce- 
ment is vastly superior to continuous. 

6. Design flexibility 
In some applications rubber is reinforced with 
continuous steel wire or continuous polymer 
fibre. Tyres, belts and hosepipes are examples of 
this practice. The reinforcement is added to raise 
the longitudinal tensile breaking strength but also 
enormously reduces the longitudinal compliance, 
thus casting away one of the great merits of 
rubber. Moreover, little variation is possible in 
the ratio of longitudinal modulus to longitudinal 
strength. 

To show that with discontinuous reinforce- 
ment much greater lattitude in the ratio is pos- 
sible equations for compliance and tensile 
strength are needed. With continuous reinforce- 
ment the compliance Cec is 

I 1 

Cee = Ee----; = EfV~ (15) 

where the subscript cc refers to continuously 
reinforced composite and the elastic modulus of 
the matrix has been neglected, which is a 
reasonable approximation with steel fibres in 
rubber. The breaking strength Orb is 

~b = ~fbV~ (16) 

where (rfb is the fibre breaking strength and again 
the matrix contribution has been neglected. From 
Equations 15 and 16 the ratio of compliance/ 
strength with continuous reinforcement is 

Cee Cf 
- , ( 1 7 )  

o" b (Tf b Vl  2 

Cf being the fibre compliance, and is invariant 
with any given matrix and fibre for given 
composite breaking stress since Vf is then fixed. 

Turning to discontinuous reinforcement, in 
this Section the subscript cd will be used to 
distinguish it from the continuously reinforced 
composite. The breaking strength is probably at 
its highest when the fibres are loaded sufficiently 
to break first. If  the fibre centre stress is, there- 
fore, put at (~fb the average fibre stress is, from 
Equation 3, w Equation 16 is therefore re- 
placed by 

~b = w (18) 

Thus, one third of the applied load is borne by 
the matrix. For this result to apply, one condition 
that must be satisfied is, therefore, (rb < �89 
amb Vm, arab being the breaking stress of the 
matrix. In the case of rubber reinforced with 
steel, afb is approximately equal to 10arab SO that 
V~ ~< 0.05. A second condition is that stress 
transfer between matrix and fibre must be 
adequate. It follows from Equation 3 that the 
fibre-matrix stress ~- is a maximum at fibre ends, 
where it is • = a~b/r, r being again the aspect 
ratio of the fibres. A likely value of ~ for steel- 
rubber is 10 N mm -2 and ofafb for steel is 1000 
N mm -2, whence r /> 100. When these two 
conditions are satisfied, Ccd/~b is obtained from 
Equations 5 and 18 and can be varied a great 
deal by altering l/s, e.g. by varying the fibre 
aspect ratio r. A measure of the extra latitude 
offered by discontinuous reinforcement is given 
by the range which Cea/Ccc can take for a given 
breaking strength ab. From the equations for 
Cec/ab (Equation 17) and Cea/(rb, 

Cca 2EfVf 16 
Cce - 3EmVm(l/4s) 2 + 4-5 (19) 

where Vf is the discontinuous value which = 
3/2 times the continuous value. 

The value of Cea/Cec for various values of r 
and V~ has been calculated with Ef = 2 x 105 
and Em = 1 N mm -~, which are values appro- 
priate to steel and rubber respectively, and the 
results are plotted in Fig. 8. The tensile strength 
indicated in Fig. 8 is derived from Equation 18 
assuming ~rb = 1000 N mm -~. Fig. 8 shows e.g. 
that for a sample breaking strength of 33 N 
mm -2 the compliance can be increased 100-fold 
if continuous wire reinforcement is replaced by 
discontinuous. In the manufacture of rubber 
belting, wire rope is used instead of plain wire in 
order to improve the compliance; an increase of 
about two-fold is possible in this way. Compared 
with such material the discontinuously reinforced 
rubber sample just referred to has a compliance 
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50 times larger. Fig. 8 also shows the range of 
variation of Cea for a given tensile strength for, 
since Cee is constant with a given Vf (Equation 
15), the ordinate shows the wide range of Cea 
available by altering r. Discontinuous reinforce- 
ment thus offers substantial latitude in design of 
materials like wire-reinforced rubber. 

2~176 I I I 

150 

Ced 
Ccc 

I 0 0  

Discontinuous Breaking strength 
Vf Nmm -2 

O'OI 6 . 7  

5 0  

0"05  33 

0 .10 67 

0 ' 2 0  

1 
0 I 0 0  2 0 0  3 0 0  4 0 0  

Fibrr aspect ratio r 

Figure 8 Showing the extra design flexibility offered by 
discontinuous as against continuous reinforcement. Cea 
is the compliance of rubber reinforced with steel wires of 
aspect ratio r. Cce is the compliance of rubber rein- 
forced with continuous steel wires to have the same 
breaking strength. The ratio Cea/Cee can be very large. 

7. Discuss ion  
The information in Fig. 4 shows that the 
assumption made in calculating with the geo- 
metrical model, namely that relative dis- 
placement between matrix and fibre increases 
linearly from fibre centre to fibre end, is 
reasonably satisfied. The maximum fibre strain 
cannot exceed (r/E~V~ when the composite strain 
is (r/Ee; according to Fig. 4, EfVf .., 7Ee, so that 
the fibre strain is everywhere substantially less 
than the applied composite strain, and when 
this condition is satisfied the assumption holds. 
Therefore, it is appropriate to apply the geo- 
metrical model to the type of composite under 
discussion. 
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For basically the same reason it is not 
surprising that there is close agreement between 
the storage modulus as calculated from the 
geometrical model (Equation 5) and as calculated 
from the force balance model (Equation 7 or 10). 
The geometrical argument leading to Equation 5 
always gives a fibre stress rising gradually from 
the fibre end to a rounded peak at the mid-point 
(Equation 3). The force-balance argument often 
gives a fibre stress that is almost constant along 
most of the fibre length and drops rapidly near 
the fibre end; but here, because Gm ~ El, and 
therefore, ~ is small, the fibre stress distribution 
is very simi]ar to that deduced from the geo- 
metrical argument. Since in this respect the two 
methods of calculation are similar in this case, 
they would be expected to give similar values of 
modulus. 

However, both calculations consider only 
shear strain in the matrix and ignore hydrostatic 
strain. It is known that in the type of matrix 
material under consideration shear strain dissi- 
pates energy far more effectively than hydrostatic 
strain. The fact that in Fig. 7 the calculations 
overestimate the loss modulus suggests that the 
shear strain has been overestimated, and a 
reduction by ~/2 in the shear strain used in the 
calculation would bring the calculated and 
experimental loss moduli into coincidence. On 
the other hand, in Fig. 4 such a reduction causes 
the calculated storage modulus to be only a 
quarter of the experimental storage modulus; 
there would be coincidence between the two if 
hydrostatic strain energy of amount equal to 
three times the shear strain energy is assumed to 
be present. Since hydrostatic strain is non- 
dissipative, the loss modulus would not be 
affected. As the matrix bulk modulus = 2Gin 
(1 + v)/3(1 - 2v) (v is Poisson's ratio), the 
hydrostatic strain would then be 5,[3(1 - 2v)/ 
2(1 + v)] ~, 5, being the shear strain. In rubber- 
like material v ,,~ �89 so that the hydrostatic 
strain would be relatively small even though the 
hydrostatic strain energy is relatively large. 

That the shear strain distribution assumed in 
deriving Equation 5 or Equation 7 should lead to 
an underestimate of storage modulus (by a factor 
2 in Fig. 4) is quite clear from the energy 
analyses. The assumed distribution necessarily 
causes holes in the matrix [4] similar to Mileiko's 
holes [11 ]. Some additional strain component is 
needed to ensure that these holes do not exist, 
and therefore the stored energy and storage 
modulus are necessarily larger than calculated. 
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It is in this way that the energy analyses justify 
the statement in the introduction that they make 
clear the sense of the approximational error. As 
just indicated, comparison with the loss modulus 
is needed to indicate the quantitative division of 
total strain into shear and hydrostatic strain, 
although the qualitative existence of hydrostatic 
strain is evident from the geometrical model [4]. 

But neglect of some strain component may not 
be the only reason for a discrepancy between 
theory and experiment. In the experiments there 
was a fairly wide range of fibre aspect ratio, while 
the packing density of fibres would inevitably 
vary somewhat from place to place. These 
normal practical factors are reasons why 
models are only an approximation to reality, 
and therefore why calculations are unlikely to be 
in exact agreement with experiment. 

It is interesting to compare the present 
modulus results for fibre reinforcement with 
those for a material reinforced with spherical 
particles. The case of a matrix which has linear 
viscosity and which adheres perfectly to the 
particles (i.e. no sliding at the matrix-particle 
interface) has been dealt with many years ago by 
distinguished authors [12-16], and is con- 
tinually retreated, e.g. [17]. According to one 
of the retreatments [18], the viscosity r/p of 
spherical particles is ~Tp = ~/(1 + 2.5Vp + 
14.1 Vp2). Using the Rayleigh analogy to replace 
this equation concerned with linear viscosity by 
the equivalent equation concerned with linear 
elasticity, the effective Young's modulus is 

Ev = E(1 + 2.5Vp + 14.1Vp2). (20) 

The amplification factor here (1 + 2.5Vv + 
14.1VvZ), is far smaller than the amplification 
factor of order ( l /4s)  ~ given by strongly adherent 
fibres. 

8. Conclusions 
(1) Both experiment and energy analysis indicate 
that very large increases in axial loss modulus, of 
order 100-fold, can be obtained by longitudinal 
reinforcement with discontinuous fibres. 

(2) Calculation based on either a geometrical 
model or a force-balance model underes t ima te  
storage modulus by a factor of about 2 in the 
present case of very stiff fibres in a compliant 
matrix but overe s t ima te  loss modulus by about 
the same factor. It is concluded that longitudinal 
extension of a sample generates a matrix 
hydrostatic strain, which stores energy non- 
dissipatively, and which is large enough in the 

present case to store about three times as much 
energy as the shear strain does. 

(3) Discontinuous reinforcement gives a very 
much wider choice of compliance for a given 
breaking strength than does continuous rein- 
forcement. 

9. Appendix-  the model in Fig. 5 
The model prescribes that the wall of the matrix 
cylinder indicated in Fig. 5 is extended by the 
amount e, which is the overall composite 
extension. A plane XYZ then shifts to X'Y'Z'. 
To calculate the resultant shear stress in the 
matrix at any point (x, y), start by letting the 
longitudinal shear stress at the fibre-matrix 
interface be %, which varies with x. Then at 
point (x, y) in the matrix the longitudinal shear 
stress ~- is given by 2era% dx = 2frye- dx if tensile 
stresses in the matrix are neglected, as is the case 
with Cox's model. Then 

-r = "roa/y (A1) 

and 

y = % a / G m y  (A2) 

where Gm is the matrix shear modulus. Using the 
standard relation from fibre theory 

a daf 
r0 - ~ dx 

and Cox's Equation 31, namely 

[ c o s h / 3 ( / / 2 - x ) ]  
~ = E t e  1 - 

cosh ill~2 

Equation A1 becomes 

a~ sinh ]3 ( ~ -  x ) ( A 3 )  

~" = ~-~ ERE/3 cosh ill~2 

and similarly for y; �9 is the longitudinal com- 
posite strain as before. Kelly [19] calculates/3 as 

= a21d((yl/a) 

which agrees with the value Cox gives. 
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